
RMIT at the TREC 2015 LiveQA Track

(Authors listed in lexicographical order of the surnames)
Ruey-Cheng Chen, J. Shane Culpepper, Tadele Tadela Damessie, Timothy Jones,

Ahmed Mourad, Kevin Ong, Falk Scholer, Evi Yulianti
RMIT University

Melbourne, Australia
{ruey-cheng.chen, shane.culpepper}@rmit.edu.au, s3497203@student.rmit.edu.au,
{timothy.jones, ahmed.mourad, kevin.ong, falk.scholer, evi.yulianti}@rmit.edu.au

Abstract—This paper describes the four systems RMIT
fielded for the TREC 2015 LiveQA task and the associated
experiments. The challenge results show that the base run
RMIT-0 has achieved an above-average performance, but
other attempted improvements have all resulted in decreased
retrieval effectiveness.

Keywords-TREC LiveQA 2015; RMIT; passage retrieval;
summarization; query trimming; headword expansion

I. OVERVIEW

In the TREC LiveQA 2015 challenge, we experi-
mented with four different retrieval-based answer-finding
strategies. Instead of pursuing a traditional question-
answering approach that seeks deeper understanding of the
questions, we focused on simple enhancements, such as
summarization, query trimming, and headword expansion.
These are common techniques used in IR, and can easily
be integrated into research-purpose retrieval engines or
pipelines of a similar scale. In our experiments, we
considered the following research questions:

RQ 1:. Will shorter or longer summaries result in better
answers?

RQ 2:. Should all of the terms in a question be used, or
should only a subset of “important” terms be used?

RQ 3:. Can headword expansion using external resources
improve the quality of answers?

To answer these questions, we configured four different
systems in the 2015 challenge. Surprisingly, we found that
passage retrieval using the full query with minimal sum-
marization and no query reduction or expansion produced
the best results.

II. DATA AND RETRIEVAL SETTINGS

We now describe the collection and retrieval setting used
in our system.

A. Server architecture

The servers are built on top of the computing resources
we allocated from NecTAR,1 the Australian National
Research cloud computing network. Throughout the chal-
lenge, we use only one instance to host all of the services.

1https://www.nectar.org.au

Question responses were dependent on the server ID
when the questions were served (see Figure II). In the
most basic form, the server converted the questions into a
bag-of-words query, and ran these against the indexes. The
three most relevant passages retrieved are then submitted
to our summarizer component, which outputs a predefined
number of sentences ranked by relevance within the
summarizer (see Section II-F).

In our final iteration, we wanted to see if a subset
of “important” terms derived from a headword expansion
would improve performance. In this iteration, we extracted
key terms from the original question, which were then
trimmed. Query expansion of the headwords was carried
out using word2vec. The reduced query with word2vec
headword expansion is passed to the query processor.
The retrieved documents were then summarized by the
summarizer, and the first sentence is then returned as the
response.

The various services were connected using a resource
allocator written in the Go Programming Language. It
included graceful handling of timeouts, and guaranteed
responses within the 60 second window. For the curious
reader, our code is available under a BSD license.2 Please
cite this paper if you use the code for anything.

B. Run descriptions

RMIT-03 (automatic): Indri bag-of-words passage re-
trieval using all of the terms in the question title, and top
three passages summarized by the method described in
Section II-F.

RMIT-1 (automatic): Indri bag-of-words passage re-
trieval using all of the terms in the question title, and the
top three passages summarized by the method described
in Section II-F. However, only the first sentence generated
by the summary process was returned.

RMIT-2 (automatic): Indri bag-of-words passage re-
trieval using terms derived from the question title, term
trimming (down to 5 terms), headword expansion (adding
up to 5 terms) using word2vec as described in Section II-H,
and the top three passages summarized by the method
described in Section II-F. Only the first sentence generated
by the summary process was returned.

2https://github.com/TimothyJones/trec-liveqa-server
3Originally referred to as Monash-System2 in the LiveQA challenge.

https://www.nectar.org.au
https://github.com/TimothyJones/trec-liveqa-server


Figure 1. System architecture for each RMIT system. Green shading indicates components that are different when compared to RMIT-0.

RMIT-3 (automatic): Indri bag-of-words passage re-
trieval using terms derived from the question title, term
trimming (down to 5 terms), headword expansion (adding
up to 5 terms) using wordnet as described in Section II-H,
and top three passages summarized by the method de-
scribed in Section II-F. Only the first sentence generated
by the summary process was returned.

C. Collection

Table I summarizes the collections we used in the
task. We indexed AQUAINT and AQUAINT-2 as TREC
Text documents. To prepare the data set for English
Wikipedia, we used the open-source tool wp-download,
4 to fetch a dump,5 extracted all of the XML content
using wikiextractor,6 and indexed every Wikipedia page
as a document. To index the Yahoo! Answers CQA data,
we processed the collection as follows: rather than just
indexing the best answers, we extracted and indexed only
the answers to previous questions and stored them as
documents. We did not make use of the subject and content
tags (i.e., question title and description) in the data.

D. Indexing

We used Indri 5.9 as our retrieval engine with Krovetz
stemming and the default InQuery stoplist.7 Once the

4https://github.com/babilen/wp-download
5We used an enwiki dump produced on May 15, 2015.
6https://github.com/attardi/wikiextractor
7http://www.lemurproject.org/indri.php

collection described in the previous section was indexed,
we ended up with a single 39GB index that contained 38.7
million documents and 12.2 million unique terms.

E. Passage Retrieval

According to our prior tests over the live stream, the
question title contains 10 terms on average, and the body
size is around 30 terms. However, as some of the question
bodies can be quite long, we decided to construct queries
using only the title. In two of our submitted runs, we
tried different ways of expressing the same query intent
by doing query reduction and expansion. The details of
this approach are described in Section II-B.

We used the fixed-sized passage operator
#combine[passage100:50](...) provided by Indri to
retrieve and parse the top three passages from document
texts. The result was then sent to the summarizer. For
performance reasons, and the length of some of the
queries, we used a bag-of-words query, and BM25
ranking. For BM25, our parameter configuration was
k1 = 0.9 and b = 0.4.8

F. Summarization

For summarization, we used the model proposed by
Takamura and Okumura [7] to generate extractive sum-
maries from the top-ranked passages. In this model,

8The values for b and k1 are different than the defaults reported by
Robertson et al. [5]. These parameter choices were reported for Atire
and Lucene in the 2015 IR-Reproducibility Challenge, see github.com/
lintool/IR-Reproducibility for further details.

https://github.com/babilen/wp-download
https://github.com/attardi/wikiextractor
http://www.lemurproject.org/indri.php
github.com/lintool/IR-Reproducibility
github.com/lintool/IR-Reproducibility


Table I
SUMMARY OF COLLECTIONS INDEXED TO ANSWER QUESTIONS.

Collection Number of Documents Number of Words Description

AQUAINT 1,034K 506M Newswire, 1999 - 2000
AQUAINT2 907K 410M Newswire, Oct 2004 - Mar 2006
Wikipedia-EN 4,847K 1,775M Online knowledge base
Yahoo! Answers CQA v1.0 31,972K 1,462M Question answers converted to documents

from the Yahoo! Answers website.

summarization is characterized as a two-way optimization
problem, in which coverage over important words is max-
imized, and redundancies are minimized simultaneously.
The mathematical formulation is given as follows:

maximize (1− λ)
∑
j

wjzj + λ
∑
i

∑
j

xiwjaij

subject to xi ∈ {0, 1}for all i;
zj ∈ {0, 1}for all j;∑

i

cixi ≤ K;

∑
i

aijxi ≥ zjfor all j

(1)

To produce an extractive summary, one basically makes
a choice over the set of sentences and decides what to
include. By doing so, one also makes an implicit choice
over words. This choice is modeled in the optimization
problem as two sets of variables xi and zj , the former
indicating the binary decision on keeping sentence i, and
the latter on keeping word j in the summary. In other
words, for each sentence i, xi is set to 1 if sentence i is to
be included in the summary, or 0 otherwise. Analogously
for each term j, zj is set to 1 if term j is included.

In this problem, ci denotes the cost of selecting sentence
si (i.e. number of characters in si), and wj denotes the
weight of word j. We used a TF-IDF weighting scheme in
which the term frequency (tf ) is derived from the question
title and body, and the inverse document-frequency (idf )
is learned from a background corpus. The term frequency
collected from the question body is further penalized with
a factor α < 1 as the information given in the question
body can be less precise than in the title.

wj =
[
tf title(j) + α tf body(j)

]
∗ idf (j) (2)

The correspondence between the sentence i and the word
j is coded in the indicator variable aij , whose value is set
to 1 if the word j appears in sentence i, and 0 otherwise.
With the first constraint, we limit the size of the summary
to K characters at most (K is set to 1,000 throughout).
With the second constraint, the word coverage is related
to the sentence coverage, thus completing the formulation.

Empirically, we fine-tuned the parameters λ and α based
on prior test runs. In the challenge, we set λ = 0.1 and
α = 0.43. We used the IBM CPLEX solver to compute
the optimal allocation.

G. Headword Detection

A headword is the key term in the question that helps
to retrieve the most relevant documents. For example, con-
sider the question: What are the sales goals daily

and monthly at MAC Cosmetics?. Here, the headword
is sales. The process of generating the hypernyms is
divided into two stages. To extract the headword, we
generate the syntactic parse tree of the question using
the Stanford parser. Then, we apply the rule-based model
initially defined by Collins [1] and later refined by Huang
et al. [2] and Silva et al. [6].

H. Query Trimming and Headword Expansion

We also experimented with a feature called query
trimming, which is to use only the “important” terms
in the question title to retrieve answers. The questions
from Yahoo! Answers are quite verbose, and intended to
be human readable. However, verbose queries are known
to perform poorly in many keyword-based IR systems.
So, it seems sensible to use only a subset of terms from
the question, especially if the terms selected are likely to
contribute the most in the ranking function.

First, we used the WAND implementation from Petri et
al. [3, 4] to extract the MaxScore Ub for each term.9 The
MaxScore list is then loaded into memory when the server
starts. At query time, we used the list to order terms by
impact, and trim the initial query down to a predefined size.
The size is set to five terms throughout the experiments
where trimming is applied.

We also experimented with two ways of expanding
the headword term in each query externally, by drawing
information from resources such as word2vec and wordnet:

• word2vec: In this method, we took a pre-trained word
embedding model distributed with word2vec10 and
used gensim11 to populate a list of query terms that
are most similar to a given input.

• wordnet: In this method, we implemented the models
proposed by Huang et al. [2] and Silva et al. [6].
We extract the hypernyms of the head word using
WordNet, and map the Penn Treebank POS Tags
to WordNet tags to decide which part of speech
senses should be considered. Then, following the
algorithm of Huang et al. [2] for head word-sense
disambiguation, we calculate terms overlap between
the definition of each sense and the definition of

9The code is available at https://www.github.com/jsc/WANDbl.
10https://code.google.com/p/word2vec
11https://radimrehurek.com/gensim

https://www.github.com/jsc/WANDbl
https://code.google.com/p/word2vec
https://radimrehurek.com/gensim


Table II
EFFECTIVENESS SUMMARY FOR ALL FOUR RMIT SYSTEMS WHEN COMPARED TO THE AVERAGE ACROSS ALL SYSTEMS PARTICIPATING IN THE

2015 LIVEQA TRACK.

Run ID Avg. Score Success Precision
(0-3) @1+ @2+ @3+ @4+ @2+ @3+ @4+

RMIT0 0.663 0.987 0.364 0.220 0.082 0.369 0.223 0.083
RMIT1 0.435 0.992 0.267 0.130 0.039 0.269 0.131 0.039
RMIT2 0.378 0.998 0.232 0.115 0.034 0.232 0.115 0.034
RMIT3 0.412 0.994 0.251 0.126 0.038 0.252 0.127 0.038

All Runs 0.465 0.925 0.262 0.146 0.060 0.284 0.159 0.065

context words (each word in the question excluding
the head word) with maximum depth of six. The
optimal sense (the one which results in the maximum
number of common words) is chosen to populate the
list of synonyms.

Note that in the latter method, we use the context
of the question, excluding the headword, to resolve the
semantic ambiguity of different senses and populate a list
of synonyms. For example, consider again the question
What are the sales goals daily and monthly at MAC
Cosmetics?, the headword is sales and the hypernyms
are gross sales, income, financial gain, and gain

sum.
For either approach, we added the top five generated

expansion terms back into the query without any modi-
fication. Note that when query trimming is applied, the
query would first get trimmed down to 5 terms, and then
expanded using the headword to at most 10 terms totally.

III. RESULTS

The LiveQA challenge results are given in Table II,
where our submitted runs and the average result across
all runs are shown. Our base run RMIT-0 delivered the
best performance in our experiment, achieving 0.663
in Avg Score. The base run outperforms the average
across all runs submitted to the challenge. On the other
hand, all refinements that we tested resulted in decreased
performance, below the average over all submitted runs.

Limiting the output to only the first sentence in the
summary (RMIT-1) appears to have a negative effect on
precision at all relevance level. This is surprising, since
adding more sentences increases the likelihood that non-
relevant information would appear in the summary.

Our result on query trimming and headword expansion
also shows no improvement. Therefore, this combined
strategy is not effective when top-sentence precision is
of concern. Among the two expansion methods, word2vec
(RMIT-2) appears to do more harm than wordnet (RMIT-3).
We speculated that headword expansion using word2vec is
not practically useful, as word2vec can be too aggressive
sometimes, generating terms that are not synonyms to the
headword and thus wildly biasing the original intent.

IV. CONCLUSION

We have explored four different system configurations
for the TREC LIVEQA Track in 2015. While we are
pleasantly surprised with the performance of our baseline

system, we believe further improvements can still be
realized using query reduction and headword expansion.
We hope that further post-run analysis will provide insight
into why the approaches were not successful in our current
system configurations.

Acknowledgment. This work was supported by the
Australian Research Council’s Discovery Projects Scheme
(DP140102655). Shane Culpepper is the recipient of an
Australian Research Council DECRA Research Fellowship
(DE140100275).

REFERENCES

[1] Michael Collins. Head-driven statistical models for
natural language parsing. Computational linguistics,
29(4):589–637, 2003.

[2] Zhiheng Huang, Marcus Thint, and Zengchang Qin.
Question classification using head words and their
hypernyms. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 927–936. Association for Computational Lin-
guistics, 2008.

[3] Matthias Petri, J Shane Culpepper, and Alistair Moffat.
Exploring the magic of wand. In Proceedings of the
18th Australasian Document Computing Symposium,
pages 58–65. ACM, 2013.

[4] Matthias Petri, Alistair Moffat, and J Shane Culpepper.
Score-safe term-dependency processing with hybrid
indexes. In Proceedings of the 37th international
ACM SIGIR conference on Research & development
in information retrieval, pages 899–902. ACM, 2014.

[5] S. E. Robertson, S. Walker, S. Jones, M. Hancock-
Beaulieu, and M. Gatford. Okapi at TREC-3. In Proc.
TREC-3, 1994.

[6] Joao Silva, Luı́sa Coheur, Ana Cristina Mendes, and
Andreas Wichert. From symbolic to sub-symbolic
information in question classification. Artificial
Intelligence Review, 35(2):137–154, 2011.

[7] Hiroya Takamura and Manabu Okumura. Text
summarization model based on maximum coverage
problem and its variant. In Proc. of EACL, pages
781–789, 2009.


	Overview
	Data and Retrieval Settings
	Server architecture
	Run descriptions
	Collection
	Indexing
	Passage Retrieval
	Summarization
	Headword Detection
	Query Trimming and Headword Expansion

	Results
	Conclusion

